Enantioselective Preparation of 8-Oxabicyclo[3.2.1]octane Derivatives via Asymmetric [3+2]-Cycloaddition of Platinum-Containing Carbonyl Ylides with Vinyl Ethers

Kento Ishida, Hiroyuki Kusama, and Nobuharu Iwasawa*
Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan

Received March 22, 2010; E-mail: niwasawa@chem.titech.ac.jp

Platinum(II)- or gold(I)-catalyzed electrophilic activation of alkynes has attracted much attention as an efficient method to facilitate atomeconomical construction of complex molecules. ${ }^{1}$ Asymmetric versions of these reactions would be highly attractive; however, there are only a few successful reports of asymmetric enyne cyclizations ${ }^{2}$ and asymmetric reactions of carbene complexes generated by isomerization of propargyl esters. ${ }^{3}$ Herein, we report a platinum-catalyzed enantioselective preparation of synthetically useful 8 -oxabicyclo[3.2.1]octane derivatives via an asymmetric [3+2]-cycloaddition reaction of a platinum-containing carbonyl ylide as a new type of asymmetric reaction based on the electrophilic activation of alkynes.

Scheme 1

Recently, we reported that treatment of acyclic γ, δ-ynones $\mathbf{1}$ with a catalytic amount of platinum(II) chloride in the presence of vinyl ethers gave 8 -oxabicyclo[3.2.1]octane derivatives $\mathbf{5}^{4 \mathrm{c}}$ through the novel bifunctional reactive species, platinum-containing carbonyl ylides 2 (Scheme 1). ${ }^{4-6}$ The high utility of the product, $\mathbf{5},{ }^{7}$ prompted us to develop an asymmetric version of this reaction. For this purpose, we first examined the reactivity of platinumphosphine complexes; however, the low electrophilicity of the model complex, cis- $\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, resulted in recovery of the starting materials. We then thought of using cationic platinum(II)-phosphine complexes ${ }^{2 \mathrm{a}-\mathrm{e}, 8}$ generated by treatment of platinum(II) chloridephosphine complexes with a silver salt. As expected, the reaction proceeded smoothly at room temperature on treatment of acyclic γ, δ ynone 1a $\left(\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}\right)$ with $10 \mathrm{~mol} \%$ of cis- $-\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ associated with $10 \mathrm{~mol} \% \mathrm{AgSbF}_{6}$ in the presence of excess benzyl vinyl ether (5 equiv) (Table 1, entry 2), and more importantly, the bicyclic alkene 4a, the product formed through a 1,2-hydrogen shift of the carbene intermediate 3a, ${ }^{9}$ was obtained in 45% yield as a single diastereomer, while the hydrolyzed ketone of the product $\mathbf{5 a}$ formed by using PtCl_{2} was obtained in only 10% yield as a minor product. Furthermore, the reaction with cis- $\mathrm{PtCl}_{2}\left[\mathrm{P}(m \text {-tol })_{3}\right]_{2}$ afforded $\mathbf{4 a}$ in higher yield and selectivity (entry 3). ${ }^{10}$ Use of 2 equiv ($20 \mathrm{~mol} \%$) of AgSbF_{6} resulted in polymerization of the vinyl ether (entry 4). It should also be noted that the reaction was significantly accelerated compared to the reaction of PtCl_{2}. To our knowledge, the electrophilic activation

Table 1. Reaction of $\mathbf{1 a}\left(\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}\right)$ with Benzyl Vinyl Ether in the Presence of Platinum(II)-Phosphine Complexes

entry	Catalyst	Solvent	Time	4a	5a
1	PtCl_{2}	toluene	3 days	trace	74\%
2	$\begin{aligned} & \text { cis }-\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2} \\ & \operatorname{AgSbF}_{6}(1: 1) \end{aligned}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	3.5 h	45\%	$10 \%^{a}$
3	$\begin{aligned} & \text { cis }-\mathrm{PtCl}_{2}\left(m-\operatorname{tol}_{3}\right)_{2} \\ & \operatorname{AgSbF}_{6}(1: 1) \end{aligned}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1.5 h	92\%	8\%
4	$\begin{aligned} & \text { cis }-\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2} \\ & \operatorname{AgSbF}_{6}(1: 2) \end{aligned}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2 h	16\%	-

${ }^{a}$ Obtained as a hydrolyzed ketone.
of alkynes by a monocationic platinum-bisphosphine complex depicted as $\left[\mathrm{PtCl}(\text { phosphine })_{2}\right]^{+}$is quite rare, ${ }^{11}$ while some enyne cyclizations catalyzed by dicationic platinum-bisphosphine complexes were reported. ${ }^{2 a, b, 8 a}$

Then, we examined various chiral phosphines under the cationic conditions and found that the reaction with (R)-BINAP, (R)-SEGPHOS, (S, S)-DIOP, and Josiphos $\mathbf{6}$ gave the product $\mathbf{4 a}$ with low enantioselectivity along with a small amount of the bicyclic enol ether 5a (ee's were not determined) (Table 2). ${ }^{12}$ On the other hand, when Walphos

Table 2. Screening of Chiral Bisphosphine ${ }^{a}$

entry	Bisphosphine	Time	4a		5a Yield (\%) ${ }^{d}$
			Yield $(\%)^{b}$	Ee $(\%)^{c}$	
1^{e}	(R)-BINAP	7.5 h	21	4 (+)	17
2	(R)-SEGPHOS	25 h	33	18 (+)	detected
$3{ }^{e}$	(S, S)-DIOP	3 h	67	4 (-)	31
4	Josiphos 6	22 h	50	10 (-)	16
5	Walphos 7a	rt-reflux	-	-	-
6	Walphos 7b	20.5 h	31	87 (-)	-
7	Walphos 7c	rt-reflux	trace	-	-
8	Walphos 7d	21.5 h	49	91 (-)	-
9^{e}	Walphos 7d	21.5 h	57	91 (-)	-
$10^{\text {ef }}$	Walphos 7d	16.5 h	70	91 (-)	-
11	Walphos 7e	21.5 h	30	77 (-)	-

[^0]Table 3. Generality of the Reaction

			$\begin{aligned} & 21 \% \mathrm{PtC} \\ & 1 \% \mathrm{AgS} \\ & \mathrm{I}_{2}, \mathrm{MS} 4 \end{aligned}$	$\xrightarrow[, \mathrm{rt}]{\xrightarrow{-7 \mathrm{~d}}}$	
entry	R^{1}	R^{2}	R^{3}	Time	Yield(\%) ${ }^{\text {a }}$ /Ee(\%) ${ }^{\text {b }}$
1	Ph	Me	Bn	16.5 h	70/91(-)
2	$p-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	Me	Bn	9 h	70/91(-)
3	$p-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$	Me	Bn	21 h	79/89(-)
4	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	Me	Bn	11 h	80/91(-)
5^{c}	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	Me	TIPS	43 h	68/94(-)
6	$i-\mathrm{Pr}$	Me	Bn	17 h	89/90(-)
7^{d}	$i-\mathrm{Pr}$	Me	PMB	46 h	69/91(-)
8	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OTIPS}$	Me	Bn	8 h	83/93(-)
9^{e}	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	Bu	Bn	26 h	50/96(-)
10^{f}	Ph	$\mathrm{CH}_{2} \mathrm{OBn}$	Bn	9 h	51/97(-)
$11^{c, g}$	Ph	$\mathrm{CH}=\mathrm{CH}_{2}$	TIPS	48 h	65/97(-)

${ }^{a}$ Isolated yield. ${ }^{b}$ Determined by chiral HPLC analysis (see Supporting Information). ${ }^{c} 5$ equiv of triisopropylsilyl vinyl ether were used. ${ }^{d} 1.5$ equiv of 4-methoxybenzyl vinyl ether and $5 \mathrm{~mol} \%$ of catalysts were used. ${ }^{e} 5$ was obtained as a hydrolyzed ketone in 27% yield. ${ }^{f}$ Hydrolyzed ketone of 5 and an isomer of 4 were obtained in 17% and 13% yield, respectively. ${ }^{g}$ Product was isolated as an alcohol by deprotection of the silyl group.
was employed, the product 4a was obtained with good enantioselectivity as a single diastereomer. Further screening of Walphos ligands revealed that the use of Walphos $7 \mathbf{d}$ gave the product $\mathbf{4 a}$ in 49% yield and 91% ee. ${ }^{13}$ Furthermore, the use of the isolated $\mathrm{PtCl}_{2}-7 \mathbf{d}$ complex and 10 equiv of vinyl ether increased the yield of $\mathbf{4 a}$ to 70% without lowering the enantioselectivity.
The generality of this asymmetric reaction is summarized in Table 3. Ynones bearing various aryl or alkyl groups as R^{1} gave the corresponding products $\mathbf{4}$ in good yields and mostly in over 90% ee's. 4-Methoxybenzyl vinyl ether could be used as dipolarophiles to give the desired product $\mathbf{4}$ bearing a PMBO group which can easily be deprotected selectively in the presence of an olefin moiety. Furthermore, triisopropylsilyl vinyl ether could be used as a dipolarophile to give the product 4 with higher enantioselectivity. The reactions of ynones bearing butyl, benzyloxymethyl, and vinyl group as the alkyne substituent R^{2} afforded the desired bicyclic alkenes $\mathbf{4}$ in lower yield but with higher enantioselectivity. In most cases, $\mathbf{4}$ were obtained as a single diastereomer bearing the alkoxy group in the exo orientation.

It should be noted that the products, 8 -oxabicyclo[3.2.1] octane derivatives equipped with several functional groups, are useful intermediates not only for the synthesis of related natural products containing this basic skeleton, such as $(-)$-englerin A^{14} and cortistatin, ${ }^{15}$ but also for the preparation of a variety of valuable functionalized cyclic compounds through manipulation of the functional groups.

Finally, the reaction was successfully applied to the intramolecular cycloaddition. Thus, treatment of an enynone $\mathbf{8}$ with 10 mol $\%$ of the catalyst gave the desired tricyclic oxacycle 9 in 90% ee in high yield (eq 1).

In summary, we have developed the enantioselective synthesis of potentially useful 8-oxabicyclo[3.2.1]octane derivatives $\mathbf{4}$ by a simple treatment of acyclic γ, δ-ynones $\mathbf{1}$ and vinyl ethers with a
cationic platinum-phosphine complex $[\mathrm{PtCl}(7 \mathbf{d})]^{+}$. To our knowledge, this is the first report of the catalytic enantioselective cycloaddition of metal-containing zwitterionic intermediates generated from alk-4-yn-1-ones.

Acknowledgment. This research was partly supported by a Grant-in-Aid for Scientific Research from Ministry of Education, Culture, Sports, Science and Technology of Japan. K.I. has been granted a Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists.

Supporting Information Available: Preparative methods and spectral and analytical data of all new materials (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) For recent reviews, see: (a) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Commиn. 2007, 333-346. (b) Chianese, A. R.; Lee, S. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2007, 46, 4042-4059. (c) Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410-3449. (d) Shen, H. C. Tetrahedron 2008, 64, 3885-3903. (e) Sohel, S.; Md., A.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269-2281. (f) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208-3221.
(2) For examples of platinum- or gold-catalyzed asymmetric enyne cyclizations, see: (a) Charruault, L.; Michelet, V.; Taras, R.; Gladiali, S.; Genêt, J.-P. Chem. Commun. 2004, 850-851. (b) Toullec, P. Y.; Chao, C.-M.; Chen, Q.; Gladiali, S.; Genêt, J.-P.; Michelet, V. Adv. Synth. Catal. 2008, 350, 2401-2408. (c) Brissy, D.; Skander, M.; Retailleau, P.; Frison, G.; Marinetti, A. Organometallics 2009, 28, 140-151. (d) Brissy, D.; Skander, M.; Jullien, H.; Retailleau, P.; Marinetti, A. Org. Lett. 2009, 11, 2137-2139. (e) Muñoz, M. P.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Organometallics 2005, 24, 1293-1300. (f) Chao, C.-M.; Vitale, M. R.; Toullec, P. Y.; Genêt, J.P.; Michelet, V. Chem.-Eur. J. 2009, 15, 1319-1323. (g) Chao, C.-M.; Beltrami, D.; Toullec, P. Y.; Michelet, V. Chem. Commun. 2009, 69886990.
(3) (a) Watson, I. D. G.; Ritter, S.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 2056-2057. (b) Uemura, M.; Watson, I. D. G.; Katsukawa, M.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 3464-3465. (c) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 1800218003.
(4) (a) Kusama, H.; Funami, H.; Takaya, J.; Iwasawa, N. Org. Lett. 2004, 6, 605-608. (b) Kusama, H.; Funami, H.; Iwasawa, N. Synthesis 2007, 20142024. (c) Kusama, H.; Ishida, K.; Funami, H.; Iwasawa, N. Angew. Chem., Int. Ed. 2008, 47, 4903-4905.
(5) For other examples of cycloaddition of metal-containing zwitterionic intermediates, see: (a) Oh, C. H.; Lee, J. H.; Lee, S. M.; Yi, H. J.; Hong, C. S. Chem. - Eur. J. 2009, 15, 71-74. (b) Li, G.; Huang, X.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 6944-6945. (c) Hsu, Y.-C.; Ting, C.-M.; Liu, R.-S. J. Am. Chem. Soc. 2009, 131, 2090-2091. (d) Shu, X.-Z.; Zhao, S.-C.; Ji, K.-G.; Zheng, Z.-J.; Liu, X.-Y.; Liang, Y.-M. Eur. J. Org. Chem. 2009, 117-122. (e) Hojo, D.; Noguchi, K.; Tanaka, K. Angew. Chem., Int. Ed. 2009, 48, 8129-8132.
(6) For reviews of cycloaddition reaction of metal-containing zwitterionic intermediates, see: (a) Kusama, H.; Iwasawa, N. Chem. Lett. 2006, 35, 1082-1087. (b) Asao, N. Synlett 2006, 1645-1656.
(7) Hartung, I. V.; Hoffmann, H. M. R. Angew. Chem., Int. Ed. 2004, 43, 1934 1949.
(8) (a) Oi, S.; Tsukamoto, I.; Miyano, S.; Inoue, Y. Organometallics 2001, 20, 3704-3709. (b) Cucciolito, M. E.; D'Amora, A.; Vitagliano, A. Organometallics 2005, 24, 3359-3361. (c) Han, X.; Widenhoefer, R. A. Org. Lett. 2006, 8, 3801-3804. (d) Feducia, J. A.; Campbell, A. N.; Doherty, M. Q.; Gagné, M. R. J. Am. Chem. Soc. 2006, 128, 13290-13297.
(9) We reported that a 1,2-hydrogen shift of the carbene intermediate $\mathbf{3}$ occurred in the reaction of ynones bearing an alkyl or an alkoxy group at the propargylic position with platinum(II) chloride. See ref 4 c .
(10) We believe both electronic and steric parameters of the ligand influence the reaction pathway. Examination of other ligands suggests that bulkier ligands favor a 1,2-hydrogen shift product. Details will be reported in due course.
(11) For example of the electrophilic activation of alkenes by monocationic platinum-bisphosphine complex, see ref 8c.
(12) The $[3+2]$-cycloaddition reaction was thought to proceed in a stepwise manner beginning with the nucleophilic addition of the vinyl ether to the oxonium carbon, which was apart from the chiral ligand on platinum.
(13) The absolute configuration of 4a was determined by X-ray crystal structure analysis of the corresponding dibromide. (see Supporting Information).
(14) Nicolaou, K. C.; Kang, Q.; Ng, S. Y.; Chen, D. Y.-K. J. Am. Chem. Soc. 2010, 132, 8219-8222, and references therein.
(15) Nicolaou, K. C.; Peng, X.-S.; Sun, Y.-P.; Polet, D.; Zou, B.; Lim, C. S.; Chen, D. Y.-K. J. Am. Chem. Soc. 2009, 131, 10587-10597, and references therein.
JA102391T

[^0]: ${ }^{a}$ Reactions were performed by addition of $\mathrm{AgSbF}_{6}(10 \mathrm{~mol} \%)$ to a mixture of ynone 1a, benzyl vinyl ether (5 equiv), $\mathrm{PtCl}_{2}(\operatorname{cod})(10 \mathrm{~mol}$ $\%$), and bisphosphine ($10 \mathrm{~mol} \%$) at RT. ${ }^{b}$ Isolated yield. ${ }^{c}$ Determined by chiral HPLC analysis (CHIRALPAK AD-H, $0.5 \mathrm{~mL} / \mathrm{min}, 2$-propanol/ hexane $=1 / 99$) ${ }^{d}$ NMR yield. ${ }^{e}$ Isolated PtCl_{2} (bisphosphine) complex was used instead of $\mathrm{PtCl}_{2}(\operatorname{cod})$ and bisphosphine. ${ }^{f} 10$ equiv of benzyl vinyl ether were used.

