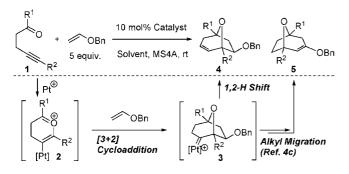


Published on Web 06/14/2010

Enantioselective Preparation of 8-Oxabicyclo[3.2.1]octane Derivatives via Asymmetric [3+2]-Cycloaddition of Platinum-Containing Carbonyl Ylides with Vinyl Ethers


Kento Ishida, Hiroyuki Kusama, and Nobuharu Iwasawa*

Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan

Received March 22, 2010; E-mail: niwasawa@chem.titech.ac.jp

Platinum(II)- or gold(I)-catalyzed electrophilic activation of alkynes has attracted much attention as an efficient method to facilitate atomeconomical construction of complex molecules.¹ Asymmetric versions of these reactions would be highly attractive; however, there are only a few successful reports of asymmetric enyne cyclizations² and asymmetric reactions of carbene complexes generated by isomerization of propargyl esters.³ Herein, we report a platinum-catalyzed enantioselective preparation of synthetically useful 8-oxabicyclo[3.2.1]octane derivatives via an asymmetric [3+2]-cycloaddition reaction of a platinum-containing carbonyl ylide as a new type of asymmetric reaction based on the electrophilic activation of alkynes.

Scheme 1

Recently, we reported that treatment of acyclic γ , δ -ynones 1 with a catalytic amount of platinum(II) chloride in the presence of vinyl ethers gave 8-oxabicyclo[3.2.1] octane derivatives 5^{4c} through the novel bifunctional reactive species, platinum-containing carbonyl ylides 2 (Scheme 1).⁴⁻⁶ The high utility of the product, $5^{,7}$ prompted us to develop an asymmetric version of this reaction. For this purpose, we first examined the reactivity of platinumphosphine complexes; however, the low electrophilicity of the model complex, cis-PtCl₂(PPh₃)₂, resulted in recovery of the starting materials. We then thought of using cationic platinum(II)-phosphine complexes^{2a-e,8} generated by treatment of platinum(II) chloridephosphine complexes with a silver salt. As expected, the reaction proceeded smoothly at room temperature on treatment of acyclic γ , δ ynone 1a ($R^1 = Ph$, $R^2 = Me$) with 10 mol % of *cis*-PtCl₂(PPh₃)₂ associated with 10 mol % AgSbF₆ in the presence of excess benzyl vinyl ether (5 equiv) (Table 1, entry 2), and more importantly, the bicyclic alkene 4a, the product formed through a 1,2-hydrogen shift of the carbene intermediate 3a,⁹ was obtained in 45% yield as a single diastereomer, while the hydrolyzed ketone of the product 5a formed by using PtCl₂ was obtained in only 10% yield as a minor product. Furthermore, the reaction with cis-PtCl₂[P(m-tol)₃]₂ afforded 4a in higher yield and selectivity (entry 3).¹⁰ Use of 2 equiv (20 mol %) of AgSbF₆ resulted in polymerization of the vinyl ether (entry 4). It should also be noted that the reaction was significantly accelerated compared to the reaction of PtCl₂. To our knowledge, the electrophilic activation

Table 1. Reaction of 1a ($R^1 = Ph$, $R^2 = Me$) with Benzyl Vinyl	
Ether in the Presence of Platinum(II)-Phosphine Complexes	

		()			
entry	Catalyst	Solvent	Time	4a	5a
1	PtCl ₂	toluene	3 days	trace	74%
2	cis-PtCl ₂ (PPh ₃) ₂	CH_2Cl_2	3.5 h	45%	$10\%^{a}$
	$AgSbF_{6}$ (1: 1)				
3	cis-PtCl ₂ (m -tol ₃) ₂	CH_2Cl_2	1.5 h	92%	8%
	$AgSbF_{6}$ (1: 1)				
4	cis-PtCl ₂ (PPh ₃) ₂	CH_2Cl_2	2 h	16%	—
	$AgSbF_{6}$ (1: 2)				

^a Obtained as a hydrolyzed ketone.

of alkynes by a monocationic platinum–bisphosphine complex depicted as $[PtCl(phosphine)_2]^+$ is quite rare,¹¹ while some enyne cyclizations catalyzed by dicationic platinum–bisphosphine complexes were reported.^{2a,b,8a}

Then, we examined various chiral phosphines under the cationic conditions and found that the reaction with (*R*)-BINAP, (*R*)-SEGPHOS, (*S*,*S*)-DIOP, and Josiphos **6** gave the product **4a** with low enantiose-lectivity along with a small amount of the bicyclic enol ether **5a** (ee's were not determined) (Table 2).¹² On the other hand, when Walphos

Table 2. Screening of Chiral Bisphosphine^a

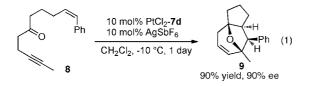
			4a		5a
entry	Bisphosphine	Time	Yield (%) ^b	Ee (%) ^c	Yield (%) ^d
1^e	(R)-BINAP	7.5 h	21	4 (+)	17
2	(R)-SEGPHOS	25 h	33	18 (+)	detected
3^e	(S, S)-DIOP	3 h	67	4 (-)	31
4	Josiphos 6	22 h	50	10(-)	16
5	Walphos 7a	rt-reflux	_	_	_
6	Walphos 7b	20.5 h	31	87 (-)	_
7	Walphos 7c	rt-reflux	trace	_	-
8	Walphos 7d	21.5 h	49	91 (-)	_
9^e	Walphos 7d	21.5 h	57	91 (-)	_
$10^{e,f}$	Walphos 7d	16.5 h	70	91 (-)	-
11	Walphos 7e	21.5 h	30	77 (-)	_

^{*a*} Reactions were performed by addition of AgSbF₆ (10 mol %) to a mixture of ynone **1a**, benzyl vinyl ether (5 equiv), PtCl₂(cod) (10 mol %), and bisphosphine (10 mol %) at RT. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis (CHIRALPAK AD-H, 0.5 mL/min, 2-propanol/hexane = 1/99) ^{*d*} NMR yield. ^{*e*} Isolated PtCl₂(bisphosphine) complex was used instead of PtCl₂(cod) and bisphosphine. ^{*f*} 10 equiv of benzyl vinyl ether were used.

Josiphos :
$$Ar^{1}_{2}P$$
 Fe : PAr^{2}_{2}
Fe : PAr^{2}_{2} 6 $Ar^{1} = Ph, Ar^{2} = 3,5-xylyl$
Walphos : PAr^{1}_{2} PAr^{2}_{2} 7a $Ar^{1} = Ph, Ar^{2} = 3,5-di-trifluoromethylphenyl$
 $7b Ar^{1} = Ph, Ar^{2} = Ph$
 $7c Ar^{1} = Ph, Ar^{2} = Ph$
 $7c Ar^{1} = 2,5-dimethyl-4-methoxyphenyl$
 $Ar^{2} = 3,5-di-trifluoromethylphenyl$
 $7d Ar^{1} = Ph, Ar^{2} = 3,5-xylyl$
 $7d Ar^{1} = Ph, Ar^{2} = 3,5-xylyl$

Table 3. Generality of the Reaction

	+ OF 10 equi	R ³ 10 m	nol% PtCl nol% AgS Cl ₂ , MS4	bF ₆ ►	
entry	R ¹	R ²	R ³	Time	Yield(%) ^a /Ee(%) ^b
1	Ph	Me	Bn	16.5 h	70/91(-)
2	p-Me-C ₆ H ₄	Me	Bn	9 h	70/91(-)
3	$p-CF_3-C_6H_4$	Me	Bn	21 h	79/89(-)
4	CH ₂ CH ₂ Ph	Me	Bn	11 h	80/91(-)
5^c	CH ₂ CH ₂ Ph	Me	TIPS	43 h	68/94(-)
6	<i>i</i> -Pr	Me	Bn	17 h	89/90(-)
7^d	<i>i</i> -Pr	Me	PMB	46 h	69/91(-)
8	(CH ₂) ₃ OTIPS	Me	Bn	8 h	83/93(-)
9^e	CH ₂ CH ₂ Ph	Bu	Bn	26 h	50/96(-)
10 ^f	Ph	CH ₂ OBn	Bn	9 h	51/97(-)
$11^{c,g}$	Ph	CH=CH ₂	TIPS	48 h	65/97(-)


^{*a*} Isolated yield. ^{*b*} Determined by chiral HPLC analysis (see Supporting Information). ^{*c*} 5 equiv of triisopropylsilyl vinyl ether were used. ^{*d*} 1.5 equiv of 4-methoxybenzyl vinyl ether and 5 mol % of catalysts were used. ^{*e*} 5 was obtained as a hydrolyzed ketone in 27% yield. ^{*f*} Hydrolyzed ketone of 5 and an isomer of 4 were obtained in 17% and 13% yield, respectively. ^{*g*} Product was isolated as an alcohol by deprotection of the silyl group.

was employed, the product **4a** was obtained with good enantioselectivity as a single diastereomer. Further screening of Walphos ligands revealed that the use of Walphos **7d** gave the product **4a** in 49% yield and 91% ee.¹³ Furthermore, the use of the isolated $PtCl_2-7d$ complex and 10 equiv of vinyl ether increased the yield of **4a** to 70% without lowering the enantioselectivity.

The generality of this asymmetric reaction is summarized in Table 3. Ynones bearing various aryl or alkyl groups as R^1 gave the corresponding products **4** in good yields and mostly in over 90% ee's. 4-Methoxybenzyl vinyl ether could be used as dipolarophiles to give the desired product **4** bearing a PMBO group which can easily be deprotected selectively in the presence of an olefin moiety. Furthermore, triisopropylsilyl vinyl ether could be used as a dipolarophile to give the product **4** with higher enantioselectivity. The reactions of ynones bearing butyl, benzyloxymethyl, and vinyl group as the alkyne substituent R^2 afforded the desired bicyclic alkenes **4** in lower yield but with higher enantioselectivity. In most cases, **4** were obtained as a single diastereomer bearing the alkoxy group in the *exo* orientation.

It should be noted that the products, 8-oxabicyclo[3.2.1]octane derivatives equipped with several functional groups, are useful intermediates not only for the synthesis of related natural products containing this basic skeleton, such as (–)-englerin A¹⁴ and cortistatin,¹⁵ but also for the preparation of a variety of valuable functionalized cyclic compounds through manipulation of the functional groups.

Finally, the reaction was successfully applied to the intramolecular cycloaddition. Thus, treatment of an enynone **8** with 10 mol % of the catalyst gave the desired tricyclic oxacycle **9** in 90% ee in high yield (eq 1).

In summary, we have developed the enantioselective synthesis of potentially useful 8-oxabicyclo[3.2.1]octane derivatives 4 by a simple treatment of acyclic γ , δ -ynones 1 and vinyl ethers with a

cationic platinum—phosphine complex [PtCl(**7d**)]⁺. To our knowledge, this is the first report of the catalytic enantioselective cycloaddition of metal-containing zwitterionic intermediates generated from alk-4-yn-1-ones.

Acknowledgment. This research was partly supported by a Grant-in-Aid for Scientific Research from Ministry of Education, Culture, Sports, Science and Technology of Japan. K.I. has been granted a Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists.

Supporting Information Available: Preparative methods and spectral and analytical data of all new materials (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- For recent reviews, see: (a) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Commun. 2007, 333–346. (b) Chianese, A. R.; Lee, S. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2007, 46, 4042–4059. (c) Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410–3449. (d) Shen, H. C. Tetrahedron 2008, 64, 3885–3903. (e) Sohel, S.; Md., A.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269–2281. (f) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208–3221.
- (2) For examples of platinum- or gold-catalyzed asymmetric enyne cyclizations, see: (a) Charruault, L.; Michelet, V.; Taras, R.; Gladiali, S.; Genêt, J.-P.; *Chem. Commun.* 2004, 850–851. (b) Toullec, P. Y.; Chao, C.-M.; Chen, Q.; Gladiali, S.; Genêt, J.-P.; Michelet, V. Adv. Synth. Catal. 2008, 350, 2401–2408. (c) Brissy, D.; Skander, M.; Retailleau, P.; Frison, G.; Marinetti, A. Organometallics 2009, 28, 140–151. (d) Brissy, D.; Skander, M.; Jullien, H.; Retailleau, P.; Marinetti, A. Org. Lett. 2009, 11, 2137–2139. (e) Muñoz, M. P.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Organometallics 2005, 24, 1293–1300. (f) Chao, C.-M.; Vitale, M. R.; Toullec, P. Y.; Genêt, J.-P.; Michelet, V. Chem.–Eur. J. 2009, 15, 1319–1323. (g) Chao, C.-M.; Beltrami, D.; Toullec, P. Y.; Michelet, V. Chem. Commun. 2009, 6988–6990.
- (3) (a) Watson, I. D. G.; Ritter, S.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 2056–2057. (b) Uemura, M.; Watson, I. D. G.; Katsukawa, M.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 3464–3465. (c) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002–18003.
- (4) (a) Kusama, H.; Funami, H.; Takaya, J.; Iwasawa, N. Org. Lett. 2004, 6, 605–608. (b) Kusama, H.; Funami, H.; Iwasawa, N. Synthesis 2007, 2014–2024. (c) Kusama, H.; Ishida, K.; Funami, H.; Iwasawa, N. Angew. Chem., Int. Ed. 2008, 47, 4903–4905.
- (5) For other examples of cycloaddition of metal-containing zwitterionic intermediates, see: (a) Oh, C. H.; Lee, J. H.; Lee, S. M.; Yi, H. J.; Hong, C. S. Chem.-Eur. J. 2009, 15, 71–74. (b) Li, G.; Huang, X.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 6944–6945. (c) Hsu, Y.-C.; Ting, C.-M.; Liu, R.-S. J. Am. Chem. Soc. 2009, 131, 2090–2091. (d) Shu, X.-Z.; Zhao, S.-C.; Ji, K.-G.; Zheng, Z.-J.; Liu, X.-Y.; Liang, Y.-M. Eur. J. Org. Chem. 2009, 17–122. (e) Hojo, D.; Noguchi, K.; Tanaka, K. Angew. Chem., Int. Ed. 2009, 48, 8129–8132.
- (6) For reviews of cycloaddition reaction of metal-containing zwitterionic intermediates, see: (a) Kusama, H.; Iwasawa, N. Chem. Lett. 2006, 35, 1082–1087. (b) Asao, N. Synlett 2006, 1645–1656.
- (7) Hartung, I. V.; Hoffmann, H. M. R. Angew. Chem., Int. Ed. 2004, 43, 1934– 1949.
- (8) (a) Oi, S.; Tsukamoto, I.; Miyano, S.; Inoue, Y. Organometallics 2001, 20, 3704–3709. (b) Cucciolito, M. E.; D'Amora, A.; Vitagliano, A. Organometallics 2005, 24, 3359–3361. (c) Han, X.; Widenhoefer, R. A. Org. Lett. 2006, 8, 3801–3804. (d) Feducia, J. A.; Campbell, A. N.; Doherty, M. Q.; Gagné, M. R. J. Am. Chem. Soc. 2006, 128, 13290–13297.
- (9) We reported that a 1,2-hydrogen shift of the carbene intermediate 3 occurred in the reaction of ynones bearing an alkyl or an alkoxy group at the propargylic position with platinum(II) chloride. See ref 4c.
- (10) We believe both electronic and steric parameters of the ligand influence the reaction pathway. Examination of other ligands suggests that bulkier ligands favor a 1,2-hydrogen shift product. Details will be reported in due course.
- (11) For example of the electrophilic activation of alkenes by monocationic platinum-bisphosphine complex, see ref 8c.
- (12) The [3+2]-cycloaddition reaction was thought to proceed in a stepwise manner beginning with the nucleophilic addition of the vinyl ether to the oxonium carbon, which was apart from the chiral ligand on platinum.
- (13) The absolute configuration of 4a was determined by X-ray crystal structure analysis of the corresponding dibromide. (see Supporting Information).
- (14) Nicólaou, K. C.; Kang, Q.; Ng, S. Y.; Chen, D. Y.-K. J. Am. Chem. Soc. 2010, 132, 8219–8222, and references therein.
- (15) Nicolaou, K. C.; Peng, X.-S.; Sun, Y.-P.; Polet, D.; Zou, B.; Lim, C. S.; Chen, D. Y.-K. *J. Am. Chem. Soc.* **2009**, *131*, 10587–10597, and references therein.
- JA102391T